Abstract
Dihydropyrimidine dehydrogenase (DPD) is a pyrimidine salvage enzyme responsible for degradation of thymine, which is produced from thymidine by thymidine phosphorylase (TP). Our purpose was to determine the relationship between DPD, cell proliferation and TP expression in human endometrium. We examined DPD gene expression using reverse transcription-polymerase chain reaction, DPD protein levels using enzyme-linked immunosorbent assay, and DPD protein localization using immunohistochemistry in 58 normal endometria and 28 endometrial cancers. DPD gene expression was then related to the proliferating cell nuclear antigen index and to TP gene expression. DPD gene expression, which was correlated with DPD protein level, was relatively stable throughout various menstrual phases but was significantly elevated in postmenopausal status. It was significantly lower in endometrial cancer than in normal endometrium. Localization analysis revealed that DPD protein was located primarily in epithelial cells, but was also present in stromal cells. DPD gene expression correlated inversely with the PCNA index. TP gene expression pattern contrasted with that of DPD in postmenopausal and malignant endometrium. A high ratio of TP to DPD gene expression was significantly more frequent in endometrial cancer than in normal endometrium in any menstrual phase. DPD may act cooperatively with TP to affect cell function by maintaining the pyrimidine nucleotide pool balance in normal and malignant endometrium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Virchows Archiv : an international journal of pathology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.