Abstract
The release of neurotransmitter is evoked by activation of the Ca current (ICa) at presynaptic terminals. Though multiple types of ICa have been reported in various cells, little is known about the properties of presynaptic ICa in the vertebrate CNS. The aim of this article is to identify the type of ICa involved in the release of neurotransmitter from retinal bipolar cells. Bipolar cells with a large axon terminal were isolated enzymatically from the goldfish retina, and studied by the following techniques: (1) recordings of ICa in the whole-cell recording configuration, (2) visualization of intracellular free Ca2+ concentration ([Ca2+]i) with the Fura-2 imaging system, and (3) real-time electrophysiological bioassay of released excitatory amino acid transmitter by a voltage-clamped horizontal cell isolated from the catfish retina. The only ICa found in bipolar cells was the high-voltage-activated, dihydropyridine-sensitive type. This result supports the recent study by Heidelberger and Matthews (1992). When ICa was activated by a short depolarizing pulse, a rapid increase of [Ca2+]i was restricted to the axon terminal. A much slower and smaller increase of [Ca2+]i was sometimes observed at the cell body, probably due to the diffusion of intracellular free Ca2+ from the axon terminal. The increase of [Ca2+]i was completely suppressed by nicardipine, suggesting that Ca2+ entered through dihydropyridine-sensitive Ca channels located mainly at the axon terminal. Activating ICa of the bipolar cell evoked a transmitter-induced current in the excitatory amino acid probe (i.e., the catfish horizontal cell). Both currents were suppressed concomitantly by nifedipine but not by omega-conotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.