Abstract

[structure: see text] Photoreaction of trans-4'-benzyl-5-styrylfuran (trans-BSF) has been studied by the 355-nm laser flash photolysis (LFP) in CH2Cl2 using a Nd3+:YAG laser (30 ps, 5 mJ pulse(-1) or 5 ns, 30 mJ pulse(-1)). Transient fluorescence and absorption spectra assigned to the singlet excited trans-BSF were observed during the 30-ps LFP, whereas a transient absorption spectrum with two peaks at 400 and 510 nm, assigned to the trans-fused dihydrophenanthrene (DHP)-type intermediate (DP1), was observed during the 5-ns LFP. It is clearly suggested that a two-photon absorption process is involved in the formation of DP1. The first photoreaction is the photoisomerization of trans-BSF, which occurs to give cis-BSF. The second photoreaction process is photocyclization of cis-BSF, which occurs to give DP1 decaying with the half lifetime (tau1/2) of 2.8-4.0 micros to produce another DHP-type intermediate (DP2) with an absorption peak at 400 nm in the absence of O2, through [1,9]-hydrogen shift. DP2 decayed with tau1/2 > 500 micros to give the product through aromatization. In O2-saturated CH2Cl2, DP1 decayed with tau1/2 = 250 ns to give a radical intermediate (X) with two peaks at 410 and 510 nm, through hydrogen abstraction of DP1 by O2. X decayed with tau1/2 = 150 micros to give the product through successive hydrogen abstraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call