Abstract

Dihydrooxadiazines are structural analogs of octopamine and were compared with octopamine for their ability to compete with [3H]dihydroergocryptine ([3H]DHE) for binding sites on DHE-sensitive receptors, to stimulate adenylate cyclase activity in nervous system homogenates of Periplaneta americana L., and to modulate the action of the peptide proctolin on the oviducal muscles of Locusta migratoria L. [3H]DHE binding was inhibited by low concentrations (μM range) of octopamine, phentolamine, N-demethylchlordimeform (DCDM) and several dihydrooxadiazines. The tested dihydrooxadiazines acted as aminergic agonists in stimulating cyclic AMP production in cockroach nervous system homogenates and did not show additive effects with octopamine, whereas additivity was observed with 5-hydroxytryptamine. The relative potency of octopaminergic antagonists, including mianserin, cyproheptadine, phentolamine, and gramine, to block octopamine-mediated elevation of cyclic AMP production was similar to the rank-order potency of the same antagonists to inhibit dihydrooxadiazine-mediated elevation of cyclic AMP production. Octopamine, 2-(4-bromophenyl)-5,6-dihydro-4H-1,3,4-oxadiazine (4-Br-PDHO), and 8-Br-cyclic AMP caused increased phosphorylation of proteins that are phosphorylated by exogenously added cyclic AMP-dependent protein kinase. These results indicate that the dihydrooxadiazine-induced rise in cyclic AMP levels in homogenates of the cockroach nervous system results directly in activation of an endogenous cyclic AMP-dependent protein kinase. 4-Br-PDHO behaved similarly to octopamine in modulating the action of proctolin-induced contractions in locust oviducal muscles. These observations suggest that dihydrooxadiazines act as octopamine agonists and have an octopaminergic action in modulating the action of proctolin. Thus, it is proposed that dihydrooxadiazines exert at least part of their insecticidal and miticidal actions through interaction with the octopaminergic system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call