Abstract

Dihydromyricetin (DHM), a natural flavonoid derived from the medicinal and edible plant Ampelopsis grossedentata, exhibits antioxidant, antiapoptosis, antitumor, and anti-inflammatory bioactivities. This study evaluated the effects of DHM on Pb-induced neurotoxicity and explored the underlying mechanisms. DHM significantly ameliorated behavioral impairments of Pb-induced mice. It decreased the levels of lipid peroxidation and protein carbonyl and increased the activities of superoxide dismutase and catalase in the brains. DHM suppressed Pb-induced apoptosis, as indicated by the decreased levels of Bax and cleaved caspase-3. DHM also decreased inflammatory cytokines in the brains of Pb-treated mice. DHM decreased amyloid-beta (Aβ) level and nuclear factor-κB nuclear translocation. Moreover, DHM induced the adenosine 5'-monophosphate-activated protein kinase (AMPK) phosphorylation and inhibited the activation of p38, Toll-like receptor 4, myeloid differentiation factor 88, and glycogen synthase kinase-3. Collectively, this is the first report indicating that DHM could improve Pb-induced cognitive functional impairment by preventing oxidative stress, apoptosis, and inflammation and that the protective effect was mediated partly through the AMPK pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call