Abstract
This study focuses on a series of cationic complexes of iridium that contain aminopyridinate (Ap) ligands bound to an (η(5) -C5 Me5 )Ir(III) fragment. The new complexes have the chemical composition [Ir(Ap)(η(5) -C5 Me5 )](+) , exist in the form of two isomers (1(+) and 2(+) ) and were isolated as salts of the BArF (-) anion (BArF =B[3,5-(CF3 )2 C6 H3 ]4 ). Four Ap ligands that differ in the nature of their bulky aryl substituents at the amido nitrogen atom and pyridinic ring were employed. In the presence of H2 , the electrophilicity of the Ir(III) centre of these complexes allows for a reversible prototropic rearrangement that changes the nature and coordination mode of the aminopyridinate ligand between the well-known κ(2) -N,N'-bidentate binding in 1(+) and the unprecedented κ-N,η(3) -pseudo-allyl-coordination mode in isomers 2(+) through activation of a benzylic C-H bond and formal proton transfer to the amido nitrogen atom. Experimental and computational studies evidence that the overall rearrangement, which entails reversible formation and cleavage of H-H, C-H and N-H bonds, is catalysed by dihydrogen under homogeneous conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.