Abstract

Molecular hydrogen is the simplest and most abundant compound in the universe and is involved in numerous industrial chemical processes. In conventional chemistry, dihydrogen typically plays the role of a reductant and a reagent for homogeneous and heterogeneous hydrogenation processes such as the industrial and enzymatic ammonia formation, reduction of metallic ores and hydrogenation of unsaturated fats and oils. However, there are also processes in which molecular hydrogen participates as promoter, and even as catalyst. The catalytic role of the dihydrogen in free-valence migration in irradiated polymers and the interstellar isomerization of the formyl cation (protonated carbon monoxide) are well-documented examples of such processes. Recently, this issue has received new attention. Dihydrogen has been shown to play the role of a dehydrogenation catalyst (involving particularly metallocomplexes and inorganic materials), a relay (pass-on) transfer molecular agent and a transporter of protons.This review article, combined with original results, is focused on the mechanisms of the chemical processes where dihydrogen demonstrates catalytic behavior. We will call these processes (with somewhat broader meaning of the term) “dihydrogen catalysis” (DHC) which also includes the reactions mediated by transition metal dihydrides. Dihydrides are tentatively considered as pre-activated dihydrogen, coordinated to a metal center or implanted into a solid surface/support.DHC reactions are classified into five major reaction types: (i) dihydrogen-assisted relay transport of H-atoms (H2-RT); (ii) dihydrogen-assisted stepwise relay transport of H-atoms or of a free valence (sH2-RT); (iii) dihydrogen-assisted proton transport (H2-PT); (iv) dihydrogen-assisted dehydrogenation (H2-DeH); and (v) pre-activated dehydrogenation (PA-DeH). The classification of these mechanisms is based on a detailed analysis of numerous potential energy surfaces studied by DFT and ab initio methods in conjunction with available experimental data. The H2-RT, H2-DeH, and PA-DeH processes occur via cyclic transition states. The relay H2-RT transport involves the H-H-H triad linked to both H-donor and H-acceptor centers, whereas the transition state ring in the H2-DeH dehydrogenation processes involves a H-H-H-H tetrad with the dihydrogen catalyst located in the middle. The H2-PT mechanism provides the transport of a proton mediated by dihydrogen combined in a triangular (H3+)-carrier unit.There are also practically important processes stimulated by dihydrogen such as the hydrogen spillover and hydrogen build-up in electronics, in which the catalytic role of dihydrogen is ambiguous, either because of the uncertainties in mechanisms, or prevailing traditional views. Some examples are briefly discussed in the framework of the concept of dihydrogen catalysis, some being provided with theoretical support (in part calculated by us), and others being merely hypothesized to provide suggestions to an interested reader.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call