Abstract

ABSTRACTBackgroundPrior evidence suggests that capsinoids ingestion may increase resting energy expenditure (EE) and fat oxidation (FATox), yet whether they can modulate those parameters during exercise conditions remains poorly understood. We hypothesized that dihydrocapsiate (DHC) ingestion would increase EE and specifically FATox during an acute bout of aerobic exercise at FATmax intensity (the intensity that elicits maximal fat oxidation during exercise [MFO]) in men with overweight/obesity. Since FATmax and MFO during aerobic exercise appear to be indicators of metabolic flexibility, whether DHC has an impact on FATox in this type of population is of clinical interest.MethodsA total of 24 sedentary men (age = 40.2 ± 9.2 years-old; body mass index = 31.6 ± 4.5 kg/m2 [n = 11 overweight, n = 13 obese]) participated in this randomized, triple-blinded, placebo-controlled, crossover trial (registered under ClinicalTrials.gov Identifier no. NCT05156697). On the first day, participants underwent a submaximal exercise test on a cycle ergometer to determine their MFO and FATmax intensity during exercise. After 72 hours had elapsed, the participants returned on 2 further days (≥ 72 hours apart) and performed a 60 min steady-state exercise bout (i.e. cycling at their FATmax, constant intensity) after ingesting either 12 mg of DHC or placebo; these conditions were randomized. Respiratory gas exchange was monitored by indirect calorimetry. Serum marker concentrations (i.e. glucose, triglycerides, non-esterified fatty acids (NEFAs), skin temperature, thermal perception, heart rate, and perceived fatigue) were assessed.ResultsThere were no significant differences (P > 0.05) between DHC and placebo conditions in the EE and FATox during exercise. Similarly, no significant changes were observed in glucose, triglycerides, or NEFAs serum levels, neither in the skin temperature nor thermal perception across conditions. Heart rate and perceived fatigue did not differ between conditions.ConclusionsDHC supplementation does not affect energy metabolism during exercise in men with overweight/obesity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.