Abstract

AbstractMolecular switches play a central role for the development of molecular electronics. In this work it is demonstrated that the reproducibility and robustness of a single‐molecule dihydroazulene (DHA)/vinylheptafulvene (VHF) switch can be remarkably enhanced if the switching kernel is weakly coupled to electrodes so that the electron transport goes by sequential tunneling. To assure weak coupling, the DHA switching kernel is modified by incorporating p‐MeSC6H4 end‐groups. Molecules are prepared by Suzuki cross‐couplings on suitable halogenated derivatives of DHA. The synthesis presents an expansion of our previously reported bromination–elimination–cross‐coupling protocol for functionalization of the DHA core. For all new derivatives the kinetics of DHA/VHF transition has been thoroughly studied in solution. The kinetics reveals the effect of sulfur end‐groups on the thermal ring‐closure of VHF. One derivative, incorporating a p‐MeSC6H4 anchoring group in one end, has been placed in a silver nanogap. Conductance measurements justify that transport through both DHA (high resistivity) and VHF (low resistivity) forms goes by sequential tunneling. The switching is fairly reversible and reenterable; after more than 20 “ON‐OFF” switchings, both DHA and VHF forms are still recognizable, albeit noticeably different from the original states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call