Abstract
Three sets of heat production and [open quotes]ash[close quotes] identification data are presented. An exothermic reaction is reported wherein the electrons of hydrogen and deuterium atoms are stimulated to relax to quantized potential energy levels below that of the [open quotes]ground state[close quotes] via electrochemical reactants K[sup +] and K[sup +]; Pd[sup 2+] and Li[sup +]; or Pd and O[sub 2] of redox energy resonant with the energy hole that stimulates this transition. Calorimetry of pulsed current and continuous electrolysis of aqueous potassium carbonate (K[sup +]/K[sup +] electrocatalytic couple) at a nickel cathode were performed. The excess output power of 41 W exceeded by a factor >8 the total input power given by the product of the electrolysis voltage and current. The product of the exothermic reaction is atoms having electrons of energy below the ground state, which are predicted to form molecules. The predicted molecules were identified by their lack of reactivity with oxygen, by separation from molecular deuterium by cryofiltration, and by mass spectroscopic analysis. 15 refs., 12 figs., 9 tabs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.