Abstract

A series of six-coordinate diCo(III) porphyrin dimers, as synthetic analogues of diheme cytochromes, have been reported here having bis(imidazole), bis(pyridine) and mixed thiophenolate−pyridine/imidazole axial ligands. In the X-ray structures of bis(imidazole) and bis(pyridine) complexes, the axial ligands are in perpendicular orientation while they are parallelly oriented in their monomeric analog. The porphyrin rings are also highly ruffle-distorted in dimer but planar in monomer which reflect the effect of intramolecular interaction between two Co(porphyrin) units in dimers. In the X-ray structure of diCo(III) thiophenolate−pyridine mixed-ligated complex, the axial Co-S and Co–N(py) distances are 2.256(1) and 2.063(2) Å, respectively. The Co–N(py) distance of 2.063(2) Å is much longer than the distances of 1.961(3) and 1.972(3) Å observed in bis(pyridine) complex and the Co-S distance is larger than Co–N(py) in the mixed ligated complex which results in a displacement of Co by 0.15 Å towards the pyridine ligand from the mean porphyrin plane. Indeed, this is the first X-ray structure of a metalloporphyrin with mixed thiophenolate−pyridine axial ligands. The effect of mixed-axial ligation is demonstrated by a blue-shift of the Soret band in the UV–visible spectroscopy and also a positive shift of the Co(III)/Co(II) redox couple as compared to their bis(pyridine) analogue. The redox potentials are shifted to a large negative value just upon replacing the metal from iron to cobalt. The present investigation emphasizes the role of axial ligation, metal ions, and also the effect of heme-heme interaction in controlling the spectral and electrochemical properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call