Abstract

AbstractThe existence problem for a Hamiltonian cycle decomposition of (the so called cocktail party graph) with a dihedral automorphism group acting sharply transitively on the vertices is completely solved. Such Hamiltonian cycle decompositions exist for all even n while, for n odd, they exist if and only if the following conditions hold: (i) n is not a prime power; (ii) there is a suitable ℓ such that (mod 2ℓ) for all prime factors p of n and the number of the prime factors (counted with their respective multiplicities) such that (mod ) is even. Thus in particular one has a dihedral Hamiltonian cycle decomposition of the cocktail party graph on 8k vertices for all k, while it is known that no such cyclic Hamiltonian cycle decomposition exists. Finally, this paper touches on a recently introduced symmetry requirement by proving that there exists a dihedral and symmetric Hamiltonian cycle system of if and only if (mod 4).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.