Abstract

The digitalis drugs are plant-derived cardenolide compounds used medicinally for several hundred years. These drugs elicit inotropic and chronotropic effects on the heart, but they also affect many other tissues. The mechanism of action involves inhibition of the ion-transport activity of a membrane-associated protein called Na,K-ATPase (sodium pump). Present theory holds that the sodium pump is the principal molecular receptor for the digitalis drugs. Recent evidence indicates the presence of naturally occurring digitalis-like compounds in mammals. It is believed these compounds, collectively known as either digitalis-like (DLF) or ouabain-like (OLF) factors, may be endogenous hormones regulating the biological activity of the sodium pump and its isoforms. The presence of deglycosylated and other congeners of one specific DLF, the digoxin-like immunoreactive factor (DLIF), has very recently been described in humans. Digoxin as a drug is the most widely prescribed digitalis in the U.S., and its measurement in serum has established a model for present-day therapeutic drug monitoring (TDM). Historically, the accurate measurement of digoxin in blood has been difficult. This article focuses on the present understanding of the clinical use of digoxin, factors that affect the accuracy of measuring digoxin, the principle of measuring metabolically active species of digoxin, and the effects of DLIF and other interfering substances in digoxin immunoassay.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call