Abstract
User engagement prediction plays a critical role in designing interaction strategies to grow user engagement and increase revenue in online social platforms. Through the in-depth analysis of the real-world data from the world's largest professional social platforms, i.e., LinkedIn, we find that users expose diverse engagement patterns, and a major reason for the differences in user engagement patterns is that users have different intents. That is, people have different intents when using LinkedIn, e.g., applying for jobs, building connections, or checking notifications, which shows quite different engagement patterns. Meanwhile, user intents and the corresponding engagement patterns may change over time. Although such pattern differences and dynamics are essential for user engagement prediction, differentiating user engagement patterns based on user dynamic intents for better user engagement forecasting has not received enough attention in previous works. In this paper, we proposed a Dynamic Intent Guided Meta Network (DIGMN), which can explicitly model user intent varying with time and perform differentiated user engagement forecasting. Specifically, we derive some interpretable basic user intents as prior knowledge from data mining and introduce prior intents to explicitly model dynamic user intent. Furthermore, based on the dynamic user intent representations, we propose a meta-predictor to perform differentiated user engagement forecasting. Through a comprehensive evaluation of LinkedIn anonymous user data, our method outperforms state-of-the-art baselines significantly, i.e., 2.96% and 3.48% absolute error reduction, on coarse-grained and fine-grained user engagement prediction tasks, respectively, demonstrating the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.