Abstract

In shale oil reservoirs, nano-scale pores and micro-scale fractures serve as the primary fluid storage and migration space, while the associated flow mechanism remains vague and is hard to understand. In this research, a three-dimensional (3D) reconstruction of the shale core and micro-pore structure description technique is established; digital core technology for shale reservoirs was developed using X-ray computed tomography (X-CT), scanning electron microscope (SEM) and a focused ion beam scanning electron microscope (FIB-SEM). Microscopic oil–water two-phase flow is mimicked using the lattice Boltzmann method (LBM), a well-acknowledged approach to exploring nanoconfined fluid dynamics. In addition, coupled with digital cores, the flow characteristics of shale reservoirs are characterized. The total porosities of bedding fractures in shale and lamellar shale are 2.042% and 1.085%, respectively. The single-phase oil flow inside bedding fractures follows Darcy’s linear flow principle. This work can deepen the understanding of the microscopic flow characteristics of continental shale reservoirs and provide a reference for similar problems that may be encountered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call