Abstract

This paper presents a novel digitally assisted dual-switch envelope amplifier used for wideband high-efficiency envelope-tracking (ET) base-station power amplifiers (PAs). The proposed envelope amplifier comprises two switching buck converters to provide the high-power ET signal to the RF stage and a wideband linear stage to maintain the envelope signal accuracy. The control technique utilizes digital signal processing in conjunction with analog hysteretic feedback to separately control two high-efficiency switchers and thus successfully reduces power consumption of the linear stage, especially for applications requiring high peak-to-average ratio (PAPR) signals. The overall ET system was demonstrated using GaAs high-voltage HBT PAs. For a variety of signals ranging from 6.6- to 9.6-dB PAPR and up to 10-MHz RF bandwidth, the overall system power-added efficiency reached 50%-60%, with a normalized root-mean-square error below 1% and the first adjacent channel leakage power ratio of -55 dBc after digital predistortion with memory mitigation, at an average output power above 20 W and 10-dB gain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call