Abstract

Lithium‐ion batteries are used in a wide range of applications, with the electromobility sector being the main contributor to the increasing demand predicted for the next decade. Although batteries play an important role in decarbonizing the transportation sector, their production includes energy‐intensive processes that hinder a more sustainable production. Moreover, the production processes are characterized by a manifold of parameters leading to complex cause–effect relations along the process chain which influences the battery cell quality. Therefore, a sustainable future for battery production and the electromobility sector depends on the environmentally and economically efficient production of high‐performance batteries. Against this background, this work presents a digitalization platform based on the coupling of mechanistic models to digitally reproduce the battery cell production and provide a deeper understanding of the interdependencies on the process, production, and product levels. In addition to a description of the individual models contained in the platform, this work demonstrates their coupling on a use case to study the effects of different solids contents of the coating suspension. Besides providing a multilevel assessment of the parameter interdependencies, considering quality, environmental and economic aspects, the presented framework contributes to knowledge‐based decision support and improvement of production and battery cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.