Abstract

In past decades, the technique of superconducting magnetic energy storage (SMES) has received substantial attention both by academia and industry with the great improvement of applicable high temperature superconductors and relevant control technologies. A bridge-type inductive energy management system topology is presented for SMES applications by using a concept of digitalization. The inductive power charging, storing and discharging status are modelled, and then digitalized for the advanced control implementation. As a consequence, an inductive energy control method can be realized by the digitalized models to satisfy relative project requirements by high efficiency and control precession. New principles and methodologies provide the theoretical foundation to achieve digital power inductor energy control and superconducting inductive energy storage device operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.