Abstract

To evaluate digital x-ray radiogrammetry (DXR) and the Radiogrammetry Kit program as new diagnostic tools for quantifying disease-related periarticular osteoporosis and for measuring joint space narrowing according to the severity and duration of rheumatoid arthritis (RA). Using DXR, we performed computerized calculations of bone mineral density (BMD) and the metacarpal index (MCI) in 258 patients with active RA. Using the Radiogrammetry Kit program, we also performed semiautomated measurements of joint space width (JSW) at the second through the fifth metacarpophalangeal (MCP) joints in these patients. All correlations between the different parameters of both techniques (BMD and the MCI as measured by DXR and MCP JSW as measured by the Radiogrammetry Kit) were significant (0.36 < or = R < or = 0.63; P < 0.01). As expected, a significant negative association was shown between the different MCP JSW results and the results of all scoring methods (-0.67 < or = R < or = -0.29). The BMD and the MCI measured by DXR both decreased significantly between Steinbrocker stage I and stage IV (by 32.7% and 36.6%, respectively; both P < 0.01). Reductions in the overall (mean) MCP JSW varied from 35.3% (Larsen score) to 52.9% (Steinbrocker stage). Over a period of 6 years, we observed relative decreases in BMD and the MCI as measured by DXR (32.1% and 33.3%, respectively), as well as in the overall (mean) MCP JSW (23.5%), and these were pronounced in early RA (duration <1 year). In addition, excellent reproducibility of DXR and Radiogrammetry Kit parameters was verified (coefficients of variation <1%). DXR with the integrated Radiogrammetry Kit program could be a promising, widely available diagnostic tool for supplementing the different RA scoring methods with quantitative data, thus allowing an earlier and improved diagnosis of RA and more precision in determining disease progression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.