Abstract

Objective During orthodontic therapy, accuracy in bonding procedures makes it easier to correct tooth alignment by decreasing the need for midcourse corrections by changing bracket positions. Indirect bonding allows the transfer of the appliance components from model casts to patient's teeth potentially meaning shorter appointments for bracket bonding and rebonding and best comfort during chairside practice. At the same time, there has been a steady increase in requests for invisible lingual orthodontic treatment. Clinical Considerations Accordingly, the aim of the present report is to illustrate the workflow to realize a complete digital indirect bonding for lingual brackets (2D, Forestadent). The procedure starts with intraoral digital scans, digital 3D model, and virtual bracket positioning, ending with the realization of a CAD-CAM prototyped transfer tray. A 3D intraoral scanner (True Definition, 3M) is used to create digital scans and digital models. A virtual bracket positioning is performed using software (NemoCast, Dentaurum), and a prototyped transfer tray is created by a CAD-CAM device. 2D lingual brackets were positioned inside the tray, so the appliance was bonded to the dental surface using light curing adhesive resin. Conclusions During orthodontic treatment, CAD/CAM technology could help clinicians. Computer-constructed transfer trays can reduce clinician error and improve the everyday workflow in the office.

Highlights

  • In straight-wire orthodontic devices, ideal bracket placement can correct tooth position in the three planes of space during treatment [1]

  • According to Carlson and Johnson [4], there are four elements necessary for ideal bracket placement: (1) bracket base adaptation to dental surface, (2) evaluation of the rotational bracket position in relation to the occlusal plane, (3) determination of vertical position of each bracket, and (4) determination of slot angulation according to the position of the roots

  • Advances in CAD/CAM technology are providing new possibilities in orthodontics: the application of CAD/CAM for establishing a virtual set-up or creating transfer trays/jig [16, 17] has improved the indirect bonding workflow. The aim of this manuscript is to illustrate the workflow to realize a complete digital indirect bonding, after an intraoral scanning and construction of a prototyped transfer tray has been created for indirect bonding

Read more

Summary

Objective

Accuracy in bonding procedures makes it easier to correct tooth alignment by decreasing the need for midcourse corrections by changing bracket positions. The aim of the present report is to illustrate the workflow to realize a complete digital indirect bonding for lingual brackets (2D, Forestadent). The procedure starts with intraoral digital scans, digital 3D model, and virtual bracket positioning, ending with the realization of a CAD-CAM prototyped transfer tray. A 3D intraoral scanner (True Definition, 3M) is used to create digital scans and digital models. A virtual bracket positioning is performed using software (NemoCast, Dentaurum), and a prototyped transfer tray is created by a CAD-CAM device. 2D lingual brackets were positioned inside the tray, so the appliance was bonded to the dental surface using light curing adhesive resin. Computer-constructed transfer trays can reduce clinician error and improve the everyday workflow in the office

Introduction
Case Report
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.