Abstract

Digital twins are a significant way to achieve fault detection of various smart manufacturing, which provide a new paradigm for complex industrial process monitoring. Wastewater treatment processes play a crucial role in water recycling, its failures may cause risks of adverse environmental impacts. This paper studies the digital twins fault detection framework based on the convolutional autoencoder for wastewater treatment processes monitoring. The designed digital twins fault detection framework can simulate the sludge bulking failure and the toxic impact failure conditions in the virtual space to construct the simulation data with continuous updating through wastewater data. The simulation data is divided into rate of change information sub-block, original sub-block, and cumulative information sub-block using the multi-block modeling strategy to fully explore the hidden information. Further, the sliding window method is utilized to resample the reconstructed sub-blocks to enhance the effects of the detection performance. Bayesian fusion is adopted, and the final decision is made based on the fused statistical value and the control limit. The comparison experiments tested on the digital twins fault detection framework demonstrate the superiority and feasibility of detection performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.