Abstract
Traditional capacity forecasting algorithms lack effective data interaction, leading to a disconnection between the actual plan and production. This paper discusses the multi-factor model based on a discrete manufacturing workshop and proposes a digital twin-driven discrete manufacturing workshop capacity prediction method. Firstly, this paper gives a system framework for production capacity prediction in discrete manufacturing workshops based on digital twins. Then, a mathematical model is described for discrete manufacturing workshop production capacity under multiple disturbance factors. Furthermore, an innovative production capacity prediction method, using the “digital twin + Long-Short-Term Memory Network (LSTM) algorithm”, is presented. Finally, a discrete manufacturing workshop twin platform is deployed using a commemorative disk custom production line as the prototype platform. The verification shows that the proposed method can achieve a prediction accuracy rate of 91.8% for production line capacity. By integrating the optimization feedback function of the digital twin system into the production process control, this paper enables an accurate perception of the current state and future changes in the production system, effectively evaluating the production capacity and delivery date of discrete manufacturing workshops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.