Abstract
In order to accomplish diverse tasks successfully in a dynamic (i.e., changing over time) construction environment, robots should be able to prioritize assigned tasks to optimize their performance in a given state. Recently, a deep reinforcement learning (DRL) approach has shown potential for addressing such adaptive task allocation. It remains unanswered, however, whether or not DRL can address adaptive task allocation problems in dynamic robotic construction environments. In this paper, we developed and tested a digital twin-driven DRL learning method to explore the potential of DRL for adaptive task allocation in robotic construction environments. Specifically, the digital twin synthesizes sensory data from physical assets and is used to simulate a variety of dynamic robotic construction site conditions within which a DRL agent can interact. As a result, the agent can learn an adaptive task allocation strategy that increases project performance. We tested this method with a case project in which a virtual robotic construction project (i.e., interlocking concrete bricks are delivered and assembled by robots) was digitally twinned for DRL training and testing. Results indicated that the DRL model’s task allocation approach reduced construction time by 36% in three dynamic testing environments when compared to a rule-based imperative model. The proposed DRL learning method promises to be an effective tool for adaptive task allocation in dynamic robotic construction environments. Such an adaptive task allocation method can help construction robots cope with uncertainties and can ultimately improve construction project performance by efficiently prioritizing assigned tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.