Abstract

With the increasing dynamic nature of customer demand, production, product, and manufacturing design changes have become more frequent. Moreover, inadequate validation during the manufacturing design phase may result in additional issues, such as process redesign and layout reallocation, during the operation phase. Therefore, systems that can pre-validate and allow accurate and reliable analysis in the manufacturing design phase, as well as apply and optimize variations in production lines in real time, are required. Previously, digital twin (DT) has been studied a lot in product design and facility prognostics and management fields. Research on the system framework leading to DT utilization and optimization and analysis through DT in complex manufacturing systems with continuous processes such as production lines is insufficient. In this study, a system based on a DT and simulation results is developed; this system can reflect, analyze, and optimize dynamic changes in the design of processes and production lines in real time. First, the framework and application of the proposed system are designed. Subsequently, optimization methodologies based on heuristics and reinforcement learning (RL) are developed. Finally, the effectiveness and applicability of the proposed system are verified by implementing an actual DT application at a real manufacturing site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call