Abstract

This article explores the integration of Digital Twins in Systems and Predictive Medicine, focusing on eye diagnosis. By utilizing the Digital Twin models, the proposed framework can support early diagnosis and predict evolution after treatment by providing customized simulation scenarios. Furthermore, a structured architectural framework comprising five levels has been proposed, integrating Digital Twin, Systems Medicine, and Predictive Medicine for managing eye diseases. Based on demographic parameters, statistics were performed to identify potential correlations that may contribute to predispositions to glaucoma. With the aid of a dataset, a neural network was trained with the goal of identifying glaucoma. This comprehensive approach, based on statistical analysis and Machine Learning, is a promising method to enhance diagnostic accuracy and provide personalized treatment approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.