Abstract

ABSTRACTWith significant advancement in information technologies, Digital Twin has gained increasing attention as it offers an enabling tool to realise digitally-driven, cloud-enabled manufacturing. Given the nonlinear dynamics and uncertainty involved during the process of machinery degradation, proper design and adaptability of a Digital Twin model remain a challenge. This paper presents a Digital Twin reference model for rotating machinery fault diagnosis. The requirements for constructing the Digital Twin model are discussed, and a model updating scheme based on parameter sensitivity analysis is proposed to enhance the model adaptability. Experimental data are collected from a rotor system that emulates an unbalance fault and its progression. The data are then input to a Digital Twin model of the rotor system to investigate its ability of unbalance quantification and localisation for fault diagnosis. The results show that the constructed Digital Twin rotor model enables accurate diagnosis and adaptive degradation analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call