Abstract
Integrating Distributed Generators (DGs), particularly renewable energy sources such as wind systems, into traditional power network presents significant protection coordination challenges. This study introduces a new optimal coordination scheme for distance and double-Stage Overcurrent (OCR) characteristics relays, utilizing digital twin technology. The proposed dual-stage of OCR protection to enhance the efficacy of the coordination between distance relays and OCRs. By employing advanced digital twin models and Hardware-in-the-Loop (HIL) testing, the proposed scheme aims to enhance fault management and relay coordination for microgrids. The scheme’s effectiveness is evaluated using a reference power network (CIGRE radial and mesh network) with and without wind systems under various fault types and locations. The study demonstrates substantial improvements over traditional and modern dynamic distance relays coordination approaches, including a reduction in maximum tripping time from 0.85 s to 0.19 s with the dual-stage scheme. Comparative analysis of digital simulation and physical twin relays further validates the accuracy and robustness of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.