Abstract
During the powder compaction process, process parameters are required for product quality prediction. However, the inadequacy of compaction data leads to difficulties in constructing models for quality prediction. Meanwhile, the existing data generation methods can only generate required data partially, and fail to generate data for extreme operating conditions and difficult-to-measure quality parameters. To address this issue, a digital twin (DT) enhanced quality prediction method for powder compaction process is presented in this paper. First, a DT model of the powder compaction process with multiple dimensions is constructed and validated. Then, to solve the data inadequacy problem, data of process parameters are generated through an orthogonal experimental design, and are imported into the DT model to generate quality parameters, so as to obtain the virtual data. Finally, the quality prediction for the powder compaction process is achieved by the generative adversarial network-deep neural network (GAN-DNN) method. The effectiveness of the generated virtual data and the GAN-DNN method is verified through experimental comparison. On top of point-to-point validation, a quality prediction system applied in a powder compaction line is developed and implemented to demonstrate the end-to-end practicability of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.