Abstract
Driven by digital twin (DT) technology, the industrial Internet of Things (IIoT) is expanding to open up new frontiers in industrial applications. However, traditional DT modeling approaches require synchronizing massive amounts of data, resulting in high communications overhead and privacy vulnerability. To address this problem, this paper proposes a novel DT architecture for IIoT, where the DT can showcase the real-time operating status of the industrial environment. Swarm learning (SL) is an emerging decentralized federated learning (FL) technique that eliminates the need of a centralized server. We present a novel credibility-weighted SL (CSL) scheme to construct the DT models, which improves data security while ensuring the fairness of participants as opposed to conventional FL. In addition, we develop a DT-assisted deep reinforcement learning (DRL) algorithm for simultaneously optimizing the system reliability and energy consumption of IIoT. Simulation comparisons demonstrate that the proposed scheme outperforms some state-of-the-art benchmarks in terms of both reliability and energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.