Abstract

Robotic automation has emerged as a leading solution for replacing human workers in dirty, dangerous, and demanding industries to ensure the safety of human workers. However, practical implementation of this technology remains limited, requiring substantial effort and costs. This study addresses the challenges specific to nuclear power plants, characterized by hazardous environments and physically demanding tasks such as nozzle dam replacement in confined workspaces. We propose a digital twin and deep-reinforcement-learning-driven robotic automation system with an autonomous mobile manipulator. The study follows a four-step process. First, we establish a simplified testbed for a nozzle dam replacement task and implement a high-fidelity digital twin model of the real-world testbed. Second, we employ a hybrid visual perception system that combines deep object pose estimation and an iterative closest point algorithm to enhance the accuracy of the six-dimensional pose estimation. Third, we use a deep-reinforcement-learning method, particularly the proximal policy optimization algorithm with inverse reachability map, and a centroidal waypoint strategy, to improve the controllability of an autonomous mobile manipulator. Finally, we conduct pre-performed simulations of the nozzle dam replacement in the digital twin and evaluate the system on a robot in the real-world testbed. The nozzle dam replacement with precise object pose estimation, navigation, target object grasping, and collision-free motion generation was successful. The robotic automation system achieved a 92.0%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$92.0\\%$$\\end{document} success rate in the digital twin. Our proposed method can improve the efficiency and reliability of robotic automation systems for extreme workspaces and other perilous environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call