Abstract

This paper presents an innovative digital tooth surface precision control model(DTS-PCM) for spiral bevel gears, focusing on the contact parameters derived from the surface synthesis method(SSM) and the pinion tooth surface contact control parameters under Gleason expert manufacturing system(GEMS). This model enables the direct derivation of tooth cutting adjustment parameters for Gleason machine tools, facilitating a seamless integration of design theory with practical processing. Firstly, a novel method for accurately determining the curvature parameters of pinion tooth surfaces, based on predefined contact parameters, has been developed using ease-off topology. Then, based on the pinion gear cutting pitch cone model, a coupled tooth line vector transformation model is proposed to calculate the principal curvature parameters of the nodes. Additionally, a set of equations for the pinion tooth surface contact control parameters is derived, and a formula for calculating the pinion gear cutting adjustment parameters is provided. Finally, two sets of pinion tooth surface contact control parameters were obtained using DTS-PCM: the calculated tooth contact analysis(TCA) and ease-of-topology results. The findings demonstrate that the proposed method is largely consistent with the outcomes of the GEMS calculations, thereby validating the accuracy of DTS-PCM. This indicates that the method can be directly integrated with GEMS software, facilitating practical applications that shorten the design and processing cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.