Abstract
The extreme sensitivity of the metal-insulator (M-I) transition in RNiO3 (R = rare-earth ion) nickelates to various extrinsic and intrinsic factors rely on mechanisms driving structure-property relations. Here, we demonstrate a unique way to control the M-I transition of epitaxial Pr0.5Sm0.5NiO3 thin films using a mosaic template of the LaAlO3(100) substrate; two sets of epitaxial films were deposited on highly oriented crystals and mosaic (with multiple crystallites) crystals. While the former films exhibit a robust and sharp M-I transition, the films on the mosaic substrate show distinctively much more subtle and broad transition, albeit same factors suggesting compositional purity. Terahertz (THz) dynamic conductivity too behaves very differently for the two types of films; Drude dynamics dominate the conductivity of highly crystalline films, whereas disorder-driven Drude-Smith conductivity prevails in mosaic films. Using this mosaic structure-controlled M-I transition and conductivity dynamics, we propose to implement these two templates of films for digital and analog THz transmission amplitude modulators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.