Abstract

Digital-to-analog converters (DACs) for high-speed optical communication systems based on CMOS technology have bandwidths lower than nowadays electro-optic components. A promising concept to circumvent this bottleneck is the frequency-interleaved DAC (FI-DAC) concept. In this paper, experimental results for the application of a 180 GS/s FI-DAC with 40 GHz analog bandwidth based on two DACs in a high-speed optical link are discussed and compared with simulation results. Thereby, phase and power mismatches, spectral overlap, clipping and the required DAC resolution are investigated. Signal-to-noise ratio (SNR) estimations based on a discrete multi-tone (DMT) signal show the influence of the individual analog components on the signal quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.