Abstract

BackgroundApproximately 50% of cardiovascular disease (CVD) cases are attributable to lifestyle risk factors. Despite widespread education, personal knowledge, and efficacy, many individuals fail to adequately modify these risk factors, even after a cardiovascular event. Digital technology interventions have been suggested as a viable equivalent and potential alternative to conventional cardiac rehabilitation care centers. However, little is known about the clinical effectiveness of these technologies in bringing about behavioral changes in patients with CVD at an individual level.ObjectiveThe aim of this study is to identify and measure the effectiveness of digital technology (eg, mobile phones, the internet, software applications, wearables, etc) interventions in randomized controlled trials (RCTs) and determine which behavior change constructs are effective at achieving risk factor modification in patients with CVD.MethodsThis study is a systematic review and meta-analysis of RCTs designed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analysis) statement standard. Mixed data from studies extracted from selected research databases and filtered for RCTs only were analyzed using quantitative methods. Outcome hypothesis testing was set at 95% CI and P=.05 for statistical significance.ResultsDigital interventions were delivered using devices such as cell phones, smartphones, personal computers, and wearables coupled with technologies such as the internet, SMS, software applications, and mobile sensors. Behavioral change constructs such as cognition, follow-up, goal setting, record keeping, perceived benefit, persuasion, socialization, personalization, rewards and incentives, support, and self-management were used. The meta-analyzed effect estimates (mean difference [MD]; standard mean difference [SMD]; and risk ratio [RR]) calculated for outcomes showed benefits in total cholesterol SMD at −0.29 [−0.44, −0.15], P<.001; high-density lipoprotein SMD at –0.09 [–0.19, 0.00], P=.05; low-density lipoprotein SMD at −0.18 [−0.33, −0.04], P=.01; physical activity (PA) SMD at 0.23 [0.11, 0.36], P<.001; physical inactivity (sedentary) RR at 0.54 [0.39, 0.75], P<.001; and diet (food intake) RR at 0.79 [0.66, 0.94], P=.007. Initial effect estimates showed no significant benefit in body mass index (BMI) MD at −0.37 [−1.20, 0.46], P=.38; diastolic blood pressure (BP) SMD at −0.06 [−0.20, 0.08], P=.43; systolic BP SMD at −0.03 [−0.18, 0.13], P=.74; Hemoglobin A1C blood sugar (HbA1c) RR at 1.04 [0.40, 2.70], P=.94; alcohol intake SMD at −0.16 [−1.43, 1.10], P=.80; smoking RR at 0.87 [0.67, 1.13], P=.30; and medication adherence RR at 1.10 [1.00, 1.22], P=.06.ConclusionsDigital interventions may improve healthy behavioral factors (PA, healthy diet, and medication adherence) and are even more potent when used to treat multiple behavioral outcomes (eg, medication adherence plus). However, they did not appear to reduce unhealthy behavioral factors (smoking, alcohol intake, and unhealthy diet) and clinical outcomes (BMI, triglycerides, diastolic and systolic BP, and HbA1c).

Highlights

  • BackgroundCardiovascular diseases (CVDs), including coronary heart disease (CHD), stroke, and peripheral vascular disease, remain one of the most common causes of early death and disability worldwide, with 17.9 million deaths and 422.7 million cases each year [1]

  • Initial effect estimates showed no significant benefit in body mass index (BMI) mean difference (MD) at −0.37 [−1.20, 0.46], P=.38; diastolic blood pressure (BP) standardized mean difference (SMD) at −0.06 [−0.20, 0.08], P=.43; systolic BP SMD at −0.03 [−0.18, 0.13], P=.74; Hemoglobin A1C blood sugar (HbA1c) risk ratio SBP (RR) at 1.04 [0.40, 2.70], P=.94; alcohol intake SMD at −0.16 [−1.43, 1.10], P=.80; smoking RR at 0.87 [0.67, 1.13], P=.30; and medication adherence RR at 1.10 [1.00, 1.22], P=

  • The primary objective of this systematic review is to identify and measure the effectiveness of digital technology interventions in randomized controlled trials (RCTs) and determine which behavior change constructs were effective at achieving risk factor modification among patients with CVD

Read more

Summary

Introduction

BackgroundCardiovascular diseases (CVDs), including coronary heart disease (CHD), stroke, and peripheral vascular disease, remain one of the most common causes of early death and disability worldwide, with 17.9 million deaths and 422.7 million cases each year [1]. In 2017 alone, there were approximately 1.7 million inpatient episodes of CVDs in the United Kingdom [2] This imposes a heavy burden on individuals and the society, accounting for £19 billion in public expense, 7.4 million disabilities, and 167,000,000 deaths in 2019 [1]. Despite widespread education and personal knowledge, many individuals fail to adequately modify these risk factors, even after a cardiovascular event with cardiac rehabilitation care center support [4]. Failure to address this challenge (ie, a change from cognitive insight to manifest action) results in patients remaining at a higher risk of future cardiovascular events with associated personal, social, and economic costs. Personal knowledge, and efficacy, many individuals fail to adequately modify these risk factors, even after a cardiovascular event. Little is known about the clinical effectiveness of these technologies in bringing about behavioral changes in patients with CVD at an individual level

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call