Abstract

BackgroundOur aim was to demonstrate that automated detection and classification of breast microcalcifications, according to Breast Imaging Reporting and Data System (BI-RADS) categorisation, can be improved with the subtraction of sequential mammograms as opposed to using the most recent image only.MethodsOne hundred pairs of mammograms were retrospectively collected from two temporally sequential rounds. Fifty percent of the images included no (BI-RADS 1) or benign (BI-RADS 2) microcalcifications. The remaining exhibited suspicious findings (BI-RADS 4-5) in the recent image. Mammograms cannot be directly subtracted, due to tissue changes over time and breast deformation during mammography. To overcome this challenge, optimised preprocessing, image registration, and postprocessing procedures were developed. Machine learning techniques were employed to eliminate false positives (normal tissue misclassified as microcalcifications) and to classify the true microcalcifications as BI-RADS benign or suspicious. Ninety-six features were extracted and nine classifiers were evaluated with and without temporal subtraction. The performance was assessed by measuring sensitivity, specificity, accuracy, and area under the curve (AUC) at receiver operator characteristics analysis.ResultsUsing temporal subtraction, the contrast ratio improved ~ 57 times compared to the most recent mammograms, enhancing the detection of the radiologic changes. Classifying as BI-RADS benign versus suspicious microcalcifications, resulted in 90.3% accuracy and 0.87 AUC, compared to 82.7% and 0.81 using just the most recent mammogram (p = 0.003).ConclusionCompared to using the most recent mammogram alone, temporal subtraction is more effective in the microcalcifications detection and classification and may play a role in automated diagnosis systems.

Highlights

  • Our aim was to demonstrate that automated detection and classification of breast microcalcifications, according to Breast Imaging Reporting and Data System (BI-RADS) categorisation, can be improved with the subtraction of sequential mammograms as opposed to using the most recent image only

  • Eighteen per cent of pre-existing Breast Imaging Reporting and Data System (BI-RADS) category 2 findings were effectively removed and the remaining were detected with an accuracy of 94.1%

  • The main drawback of those systems is the considerable number of false positives (FPs) per image, that can range up to 1–3, which reduces their clinical applicability [8]

Read more

Summary

Introduction

Our aim was to demonstrate that automated detection and classification of breast microcalcifications, according to Breast Imaging Reporting and Data System (BI-RADS) categorisation, can be improved with the subtraction of sequential mammograms as opposed to using the most recent image only. Several groups [5,6,7] have assessed the use of CAD systems for the detection of microcalcifications present in the most recent mammographic views, with sensitivity and specificity in the range of 82−89% and 87−88%, respectively, when discriminating between benign and suspicious microcalcifications. The main drawback of those systems is the considerable number of false positives (FPs) per image, that can range up to 1–3, which reduces their clinical applicability [8]. They provide no information regarding the presence of those abnormalities in previous mammographic sessions

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call