Abstract
A digital signal processor-based cross-coupled functional link (FL) radial basis function network (FLRBFN) control is proposed in this study for the synchronous control of a dual linear motors servo system that is installed in a gantry position stage. The dual linear motors servo system comprises two parallel permanent magnet linear synchronous motors (PMLSMs). First, the dynamics of the field-oriented control PMLSM servo drive with a lumped uncertainty, which contains parameter variations, external disturbance and friction force, is introduced. Then, to achieve accurate trajectory tracking performance with robustness, an intelligent control approach using FLRBFN is proposed for the field-oriented control PMLSM servo drive system. The proposed FLRBFN is a radial basis function network embedded with a FL neural network. Moreover, to guarantee the convergence of the FLRBFN, a discrete-type Lyapunov function is provided to determine the varied learning rates of the FLRBFN. In addition, since a cross-coupled technology is incorporated into the proposed intelligent control scheme for the gantry position stage, both the position tracking errors and synchronous errors of dual linear motors will converge to zero, simultaneously. Finally, some experimental results are illustrated to depict the validity of the proposed control approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.