Abstract

Low-resistivity objects produce eddy currents when excited with electromagnetic waves of a certain frequency and then generate an eddy electromagnetic field. A portable frequency-domain electromagnetic exploration system can be used to identify this eddy electromagnetic field, and then the low-resistivity objects can be positioned. At present, portable frequency-domain electromagnetic method (FEM) exploration systems use analog signal compensation, and the sounding depth is generally calculated using empirical formulas. In order to improve the rationality of signal compensation, this paper puts forward a digital signal compensation technology, including a device design, an information extraction method, and a primary field calibration method, and makes an exploration prototype based on the digital signal compensation technology. Using 10 nV as the minimum potential detection capability, the sounding depth of the portable FEM was analyzed, and it was found that when investigating a target with the same depth, a lower frequency required a larger emission current. If this could not be met, the sounding depth became smaller, and a phenomenon appeared in which the lower the operating frequency, the smaller the sounding depth. Through the detection of known underground garages, the apparent conductivity and normalized secondary field anomalies with higher sensitivity were obtained, which indicates that the detection system based on the digital signal compensation technology is effective in practical exploration. Via long-distance detection experiments on cars, it was confirmed that the sounding depth of the portable multi-frequency FEM in practical work indeed decreases with a decrease in the operating frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call