Abstract
Skeletal remains analyzed by anthropologists, paleontologists and forensic scientists are usually found fragmented or incomplete. Accurate estimations of the original morphologies are a challenge for which several digital reconstruction methods have been proposed. In this study, the accuracy of reconstructing bones based on multiple linear regression (RM) was tested. A total of 150 digital models from complete zygomatics from recent past populations (European and African American) were studied using high-density geometric morphometrics. Some landmarks (i.e., 2, 3 and 6) were coded as missing to simulate incomplete zygomatics and the missing landmarks were estimated with RM. In the zygomatics, this simulated damage affects a few square centimeters or less. Finally, the predicted and original shape data were compared. The results indicate that the predicted landmark coordinates were significantly different from the original ones, although this difference was less than the difference between the original zygomatic and the mean zygomatic in the sample. The performance of the method was affected by the location and the number of missing landmarks, with decreasing accuracy with increasing damaged area. We conclude that RM can accurately estimate the original appearance of the zygomatics when the damage is small.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.