Abstract

To evaluate the radiation dose, image quality, and Cobb angle measurements obtained with a digital scanning method of scoliosis radiography. Multiple images were reconstructed into one image at a workstation. A low-dose alternative was to use digital pulsed fluoroscopy. Dose measurements were performed with thermoluminescent dosimeters in an Alderson phantom. At the same time, kerma area-product values were recorded. A Monte Carlo dose calculation also was performed. Image quality was evaluated with a contrast-detail phantom and visual grading system. Angle measurements were evaluated with an angle phantom and measurements obtained on patient images. The effective radiation dose was 0.087 mSv for screen-film imaging, 0.16 mSv for digital exposure imaging, and 0.017 mSv for digital fluoroscopy; the corresponding kerma area-product values were 0.43, 0.87, and 0.097 Gy. cm(2), respectively. The image quality of the digital exposure and screen-film images was about equal at visual grading, whereas fluoroscopy had lower image quality. The angle phantom had lower angle values with digital fluoroscopy, although the difference in measured angles was less than 0.5 degrees. The patient images showed no difference in angles. The described digital scanning method has acceptable image quality and adequate accuracy in angle measurements. The radiation dose required for digital exposure imaging is higher than that required for screen-film imaging, but that required for digital fluoroscopy is much lower.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.