Abstract

We study the performance of novel quadrature amplitude modulation (QAM) constellations for 100 Gb/s transmission by a directly-modulated laser. Due to the strong nonlinearity of a directly-modulated laser, rectangular constellations suffer a large penalty from their regular spacing between symbols. We present a method for synthesizing irregular constellations which position symbols more efficiently. We will demonstrate the improved performance of these novel constellations over the conventional rectangular constellation as well as the superior performance achievable with digital QAM compared to optimally bit-loaded discrete-multitone modulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.