Abstract

Current induced in cultured cerebellar granule cells by the bath application of kainate (500 microM) was measured using the conventional patch-clamp technique. Two different kinds of responses were observed after the agonist perfusion. Some cells exhibited small inward whole-cell currents: 116 +/- 40 pA (7 cells) at a clamp potential of -60 mV; in other cells, the agonist induced significantly larger currents: 420 +/- 35 pA (6 cells) at a clamp potential of -60 mV. The current flowing in the agonist-activated ionic channels was indirectly estimated by processing the fluctuations of whole-cell current by means of an original parametric method. Mean conductance of the underlying channels was then determined from the single-channel current estimated at different clamp potentials. In the cells exhibiting small inward currents, the mean conductance was equal to 0.5 +/- 0.2 pS (7 cells), whereas in the cells with large inward currents it was 3 +/- 0.4 pS (6 cells). This result gives a coherent explanation of the different kinds of responses observed at macroscopic level in the whole-cell current and confirms that kainate-activated channels can exhibit different levels of conductance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call