Abstract

This paper proposes a digital preservation solution for Sinhala audios to conserve those as documents with noise reduction. The solution has implemented multiple noise reduction techniques as a pre-processing step to remove unwanted internal and external noises. A two-step, two-way noise reduction process is applied to produce clean audios based on Deep Convolutional Neural Network (DCNN) and adaptive filter-based techniques. This approach implements two separate noise reduction models for internal and external noises. After that, the speech recognition decoder recognizes the speech and converts it to a Unicode document by acoustic, language, and pronunciation models using extracted audio features from the denoised audio. Further, noise reduction models are decoupled from the preservation solution and exposed as a sub solution for multilingualism noise reduction, supporting English and Sinhala audios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.