Abstract

Recently, new types of cation disordered rocksalt (DRS) have been reported which show good reversibility. In our study we combined the strategy of using high-valent cations with partial substitution of fluorine for oxygen anions in disordered rocksalt-structure phase to achieve optimal Mn2+/Mn4+ double-redox reaction in the composition system Li2MnxTi1-xO2F (1/3 ≤ x ≤ 1). we synthesized 4 different compositions (Li2MnIIIO2F, Li2MnII 1/3MnIII 1/3TiIV 1/3O2F, Li2MnII 1/2TiIV 1/2O2F and Li2MnII 1/3TiIII 1/3TiIV 1/3O2F). Two of them were synthesized for the first time, Li2MnII 1/3MnIII 1/3TiIV 1/3O2F and Li2Mn II 1/3TiIII 1/3TiIV 1/3O2F. By studying the electrochemical properties of different compounds we found that Ti+4 in the structure keeps Mn at the second state of charge, thus enabling a double redox reaction of Mn2+/Mn4+. By investigating the electrochemical properties of all samples we found that the sample with the composition Li2Mn2/3Ti1/3O2F showed the best electrochemical properties with initial high discharge capacity of 227 mAh g-1 in the voltage window of 1.5-4.3 V and 82% of capacity retentionafter 100 cycles. However, fluorination might lead to several issues such as synthesis limitation, lithium diffusion issues due to preferable strong Li-F bonds, etc. thus, two more different samples based on the Li2Mn2/3Ti1/3O2F composition were synthesized and their properties were investigated (Li1.5MnII 1/3MnIII 1/3TiIV 1/3O2F0.5 and Li1.25MnII 1/3MnIII 1/3TiIV 1/3O2F0.25) in order to find the proper amount of fluorine in the structure which promises the electrochemical behavior. In the following the effect of fluorine on lithium diffusion was investigated by ex-situ Raman studies. These studies shed light on the diffusion pathways of lithium ions during charge and discharge process. The structural characteristics are examined using X-ray diffraction patterns, Rietveld refinement, energy-dispersive X-ray spectroscopy and scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. The oxidation states and charge transfer mechanism are also studied further using extended X-ray absorption fine structure and X-ray photoelectron spectroscopy in which the results approve the double redox mechanism of Mn2+/Mn4+ in agreement with Mn-Ti structural charge compensation. The findings pave the way for designing high capacity electrode materials with multi-electron redox reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.