Abstract

Metal–air batteries have attracted significant attention due to their excellent advantage of high-energy-density metal anodes with air cathodes. The development of structurally stable materials has been a great challenge for Zn-air batteries. Layered 2D materials provide unique opportunities due to their facial synthesis and structural stability. In this presentation, we demonstrate intercalated architecture TaSi2N4 layered material for cathode and anode of Zn–air batteries. The mechanistic aspects of Zn storage will be shown. These van der Waals materials undergo a phase during Zn loading. Interestingly, TaSi2N4 surface shows the two-electron mechanism of oxygen reduction. These layered materials will create new possibilities for the development of unique electrodes of Zn–air batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call