Abstract

Digital pre-distortion (DPD) is a powerful technique to mitigate transmitter nonlinear distortion in optical transmissions. In this Letter, the identification of DPD coefficients based on the direct learning architecture (DLA) using the Gauss-Newton (GN) method is applied in optical communications for the first time. To the best of our knowledge, this is the first time that the DLA has been realized without training an auxiliary neural network to mitigate optical transmitter nonlinear distortion. We describe the principle of the DLA using the GN method and compare the DLA with the indirect learning architecture (ILA) that uses the least-square (LS) method. Extensive numerical and experimental results indicate that the GN-based DLA is superior to the LS-based ILA, especially in a low signal-to-noise ratio scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.