Abstract

Over at least the last two decades, digital predistortion (DPD) has become the most common and widespread solution to cope with the power amplifier's (PA's) inherent linearity-versus-efficiency tradeoff. When compared with other linearization techniques, such as Cartesian feedback or feedforward, DPD has proven able to adapt to the always-growing demands of technology: wider bandwidths, stringent spectrum masks, and reconfigurability. The principles of predistortion linearization (in its analog or digital forms) are straightforward, and the linearization subsystem precedes the PA (a nonlinear function in a digital signal processor in the case of DPD or nonlinear device in the case of analog predistortion and counteracts the nonlinear characteristic of the PA. Some excellent overviews on DPD can be found in [1]-[4]. Let us now look at the challenges that DPD linearization has faced and will continue to face in the near future with 5G new radio (5G-NR).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call