Abstract
In minimal residual disease (MRD), where there are exceedingly low target copy numbers, digital PCR (dPCR) can improve MRD quantitation. However, standards for dPCR MRD interpretation in acute lymphoblastic leukemia are lacking. Here, for immunoglobulin/T-cell receptor-based MRD, we propose an objective, statistics-based analytic algorithm. In 161 postinduction samples from 79 children with acute lymphoblastic leukemia, MRD was performed by dPCR and real-time quantitative PCR (qPCR) using the same markers and primer-probe sets. The dPCR raw data were analyzed by using an automated algorithm. dPCR and qPCR results were highly concordant (P<0.0001): 98% (50 of 51) of qPCR positive were positive by dPCR, whereas 95% (61 of 64) of qPCR negative results were also negative by dPCR. For MRD quantitation, both qPCR and dPCR were tightly correlated (R2=0.94). Using more DNA (1 μg×7 versus 630 ng×3), dPCR improved sensitivity of MRD quantitation by one log10 (median MRD positive cutoff 1.6×10-5). With dPCR, 83% (29 of 35) of positive-not-quantifiable results by qPCR could be assigned positive/negative MRD status. Seven replicates of tested samples and negative controls were optimal. Compared with qPCR, dPCR could improve MRD sensitivity by one log10. We proposed an automatable, statistics-based algorithm that minimized interoperator variance for dPCR MRD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.