Abstract
In modern clinical practice, digital pathology has a crucial role and is increasingly a technological requirement in the scientific laboratory environment. The advent of whole-slide imaging, availability of faster networks, and cheaper storage solutions has made it easier for pathologists to manage digital slide images and share them for clinical use. In parallel, unprecedented advances in machine learning have enabled the synergy of artificial intelligence and digital pathology, which offers image-based diagnosis possibilities that were once limited only to radiology and cardiology. Integration of digital slides into the pathology workflow, advanced algorithms, and computer-aided diagnostic techniques extend the frontiers of the pathologist's view beyond a microscopic slide and enable true utilisation and integration of knowledge that is beyond human limits and boundaries, and we believe there is clear potential for artificial intelligence breakthroughs in the pathology setting. In this Review, we discuss advancements in digital slide-based image diagnosis for cancer along with some challenges and opportunities for artificial intelligence in digital pathology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.