Abstract

Abstract The Miocene deep sea turbidite sandstone of Burqan Formation is important hydrocarbon reservoir target in Midyan region, Red Sea, NW of Saudi Arabia. Excellently exposed outcrops of Burqan Formation in Midyan region provide good data to examine and evaluate the reservoir rocks. This study integrates field observations (sedimentologic, stratigraphic and structural) and measurements from outcrop analog of the turbidite sandstone to investigate and characterize the reservoir heterogeneity, quality and architecture. The methods and approach followed used sedimentologic and stratigraphic analysis based on vertical and lateral outcrop sections and photomosaic so as to reveal the vertical and lateral distribution of the lithofacies and their geometries at outcrop scale. Moreover, terrestrial laser scanning (LiDAR) was utilized in this study to capture outcrop meso to macroscopic sedimentologic and stratigraphic and structural features details (strata surfaces. geometry distribution, faults, fractures). We integrated field observations with laboratory analyses to characterize the microscopic sedimentologic heterogeneity of lithofacies, texture, composition and petrophysical properties of the turbidite sandstone. The stratigraphic analysis shows variation in outcrops from proximal to distal parts, within 15 to 20 km traverse across the outcrops belt (west to east) of Burqan Formation. The sandstone body thickness varied between 2 – 4 m in the proximal parts and between 0.5 – 1 m distally. Also, these variations in thickness was associated with increasing of shale/sandstone ratio from proximal to distal parts. The sandstone bodies width revealed from outcrop mosaics extend laterally between 100 to over 150 m. The lithofacies consists of both matrix and clast supported conglomerates, pebbly sandstone and coarse to very coarse and medium grained, massive, trough and horizontally stratified sandstone. These facies were interbedded with siltstone, mudstone and shale. The sand bodies were vertically and laterally stacked in the proximal parts and decreases in the medial and distal parts, however, locally the shale and mudstone lithofacies interbeds and form baffle zones. The region is tectonically and structurally active, therefore, at outcrop scale the repeated tectonics and rifting in the region resulted in faulting, shearing and fracturing which added complexity to the turbidite sandstone reservoir architecture. Moreover, tectonic affected reservoir/seal relationship, reservoir continuity and distribution of inter-reservoir barriers and baffles. The results of this high resolution outcrop analog study might provide information and data base on types and scales of geological heterogeneities and their impact on reservoir quality and architecture within the interwell spacing. Moreover, it might also provide guides for exploration and development and help in decision making to avoid risks under the complex geological setting in the Red Sea region and other hydrocarbon basins under similar geological setting.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.