Abstract

The lack of ability to determine and implement accurately quantum optimal control is a strong limitation to the development of quantum technologies. We propose a digital procedure based on a series of pulses where their amplitudes and (static) phases are designed from an optimal continuous-time protocol for given type and degree of robustness, determined from a geometric analysis. This digitalization combines the ease of implementation of composite pulses with the potential to achieve global optimality, i.e., to operate at the ultimate speed limit, even for a moderate number of control parameters. We demonstrate the protocol on IBM's quantum computers for a single qubit, obtaining a robust transfer with a series of Gaussian or square pulses in a time T=382 ns for a moderate amplitude. We find that the digital solution is practically as fast as the continuous one for square subpulses with the same peak amplitudes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call